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Abstract

Adaptive quadrature is applied to marginal maximum likelihood estimation for item response

models with normal ability distributions. Even in one dimension, significant gains in speed and

accuracy of computation may be achieved.

Key words: Normal distribution, Gauss-Hermite integration, Rasch model, 2PL model

i



Acknowledgments

This paper has benefited from conversations with Matthias von Davier and Sandip Sinharay. Boaz

Haberman provided programming assistance.

ii



In marginal maximum likelihood estimation for models for item responses in which the

ability distribution is normal, evaluation of the log likelihood and its partial derivatives requires

quadrature. Gauss-Hermite quadrature is attractive given the normal ability distribution, but this

method of integration may be less efficient than adaptive Gauss-Hermite quadrature for relatively

long tests.

To study this issue, Gauss-Hermite and adaptive Gauss-Hermite quadrature are described in

sections 1 and 2. Application to the Rasch and 2PL models is made using data from the Praxis
TM

series.

Implications of results for psychometric practice are considered in section 3. On the whole,

adaptive quadrature appears attractive even for one-dimensional cases.

1 Gauss-Hermite Quadrature

Gauss-Hermite quadrature is a classical numerical integration technique based on Hermite

polynomials (Ralston, 1965, pp. 93–97). It has been applied to marginal estimation for a long

period of time (Bock & Lieberman, 1970). In general, the Gauss-Hermite approach is applied to

an integral of the form

I(f) =
∫ ∞

−∞
f(x) exp(−x2)dx.

The r-point approximation

Ir(f) =
r∑

k=1

wkf(xk) exp(−x2
k)

is designed so that Ir(f) = I(f) for any real function f such that, for an integer k ≤ 2r − 1,

f(x) = xk for all real x. Tables of the xk and wk are readily available both in general works on

mathematical functions (Davis & Polonsky, 1965, p. 924) and in specialized works on Gaussian

quadrature (Stroud & Secrest, 1966). An important feature of Gauss-Hermite quadrature is that

the difference er(f) = I(f)− Ir(f) satisfies

er(f) =
r!(2π)1/2f2r(η)

2r(2r)!

for some real η if f has continuous derivatives fk for 1 ≤ k ≤ 2r.

In marginal estimation, it is more convenient to consider expressions based on the normal

density function. The standard formula in calculus for change of variables implies that, for the

standard normal density function φ with value φ(x) = exp(−x2/2)/(2π)1/2 for x in R and for a

1



real function g, the integral

J(g) =
∫ ∞

−∞
g(y)φ(y)dy

is equal to I(f) if f(x) = g(21/2x)/π1/2 for real x. If yk = 21/2xk and vk = wk/π1/2 for 1 ≤ k ≤ r,

then

Jr(g) =
r∑

k=1

g(yk)vk = Ir(f),

and J(g)− Jr(g) equals

er(f) =
r!(2)1/2g2r(21/2η)

(2r)!
,

where g2r is the 2rth derivative of g. It is important in the discussion in this paper to note that

each vk is positive, vk = vr−k+1, yk = −yr−k+1, and
∑r

k=1 vk = 1, so that Jr(g) is symmetric

about 0 in the sense that Jr(g) = Jr(h) if h(x) = g(−x) for all real x. If f is a bounded and

continuous function on the real line, then er(f) approaches 0 as r approaches ∞ (Breiman, 1968,

p. 181). More generally, if f is continuous and |f(x)|/[1 + |x|k] is bounded for real x for some

real k ≥ 0, then er(f) approaches 0 as r approaches ∞ (Breiman, 1968, p. 164). In addition, if

Φ is the distribution function of a standard normal random variable and if Φr is the distribution

function such that Φr(x), x real, is the sum of the vk for integers k, 1 ≤ k ≤ r, such that yk ≤ x,

then Φr(x) approaches Φ(x) as r approaches ∞ (Breiman, 1968, p. 159).

To illustrate use of Gauss-Hermite quadrature, two simple examples of one-dimensional item

response models will be considered. Both will be applied to data from the Praxis series in which

45 items are right-scored for 8,686 examinees.

In both applications, n examinees and q items are present. For examinee i from 1 to n, Xij

is the response code for item j, 1 ≤ j ≤ q. It is assumed that Xij is 1 for a correct response

and 0 for an incorrect or missing response. The vectors Xi with coordinates Xij , 1 ≤ j ≤ q,

are assumed to be independent and identically distributed random vectors. Let Γ be the set of

q-dimensional vectors with coordinates that are 0 or 1, and let S be the set of arrays s with

nonnegative coordinates s(x), x in Γ, such that the sum
∑

x∈Γ s((x) = 1. Let p in S be the array

of probabilities p(x) = P (Xi = x) for x in Γ, so that p defines the distribution of X, and the log

likelihood function ` is

`(p) =
n∑

i=1

log p(Xi).

For a nonempty subset T of S, consider a model M that p is in T . The log likelihood `(p) has

maximum `(T ) for p in T , and a maximum-likelihood estimate p̂ in T satisfies `(p̂) = `(T ). If
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g is a function on T , then ĝ = g(p̂) is a maximum-likelihood estimate of g(p). The estimated

minimum logarithmic penalty per item for prediction of Xi by use of a probability vector in T is

Ĥ = −(nq)−1`(T )

(Gilula & Haberman, 1994, 1995). If p is in T , then Ĥ provides an estimate of the entropy per

item of the responses Xi.

Associated with each examinee i is an ability variable θi. The θi, 1 ≤ i ≤ n, are assumed to

be independent and identically distributed random variables with common distribution function

D, and, for each i, 1 ≤ i ≤ n, the Xij , 1 ≤ j ≤ q, satisfy the local independence requirement

that they are conditionally independent given θi. It is further assumed that the pairs (Xi, θi) are

mutually independent. For each examinee i, 1 ≤ i ≤ n, the conditional probability that Xij = 1

given θi = θ is Pj(θ) > 0, and the conditional probability that Xij = 0 is Qj(θ) > 0. The item

logit function λj of item j, 1 ≤ j ≤ q, is then log(Pj/Qj) (Holland, 1990). The item logit vector λ

is then the q-dimensional function with coordinate j, 1 ≤ j ≤ q, equal to λj .

For q-dimensional vectors a and b with respective coordinates aj and bj for 1 ≤ j ≤ q, let

a′b =
q∑

j=1

ajbj .

and let

V =
q∏

j=1

Qj =
q∏

j=1

[1 + exp(λj)]−1. (1)

Then

p(x) =
∫

V exp(x′λ)dD (2)

for all x in Γ, so that

`(p) =
n∑

i=1

log
∫

V exp(X′
iλ)dD.

In this report, one-parameter (1PL, Rasch) and two-parameter (2PL) models are considered.

In the one-parameter case, let 1 be the q-dimensional vector with each coordinate 1. Let Λ1 be

the set of functions λ such that

λ(θ) = aθ1− γ (3)

for some common item discrimination a and some q-dimensional vector γ with coordinates γj ,

1 ≤ j ≤ q, so that γj/a is the difficulty parameter for item j, 1 ≤ j ≤ q. Then λ is assumed to be

in Λ1.

3



In the two-parameter case, let Λ2 be the set of functions λ such that

λ(θ) = θa− γ (4)

for some q-dimensional vector a with coordinates aj > 0 for 1 ≤ j ≤ q and some q-dimensional

vector γ with coordinates γj , 1 ≤ j ≤ q, so that aj is the item discrimination and γj/aj is the

difficulty parameter for item j, 1 ≤ j ≤ q. Then λ is assumed to be in Λ2.

It is quite common to assume that the common distribution function D of the θi is the

standard normal distribution function Φ, so that

p(x) = J(V exp(x′λ)) (5)

for all x in Γ, and

`(p) =
n∑

i=1

log J(V exp(X′
iλ)). (6)

For example, in the normal 1PL (normal Rasch) model M1, it is assumed that p is in T1,

where T1 consists of arrays p in S such that (1) and (2) hold for some λ in Λ1 and D = Φ.

Similarly, in the normal two-parameter model M2, it is assumed that p is in T2, where T2 consists

of arrays p in S such that (1) and (2) hold for some λ in Λ2 and D = Φ.

If Gauss-Hermite quadrature with r points is used to approximate the log likelihood for model

Mk, where k is 1 or 2, then the practical effect is to replace Mk with the model Mkr that p is in

Tkr, where Tkr is the set of arrays p in S such that (1) and (2) hold for some λ in Λk and D = Φr.

Thus

p(x) = Jr(V exp(x′λ)) (7)

for all x in Γ, and

`(p) =
n∑

i=1

log Jr(V exp(X′
iλ)). (8)

For model Mkr, maximization of the log likelihood corresponds to maximization of a log likelihood

function for a log-linear model of a frequency table in which not all cells are directly observed, so

that algorithms developed for such models can be applied (Haberman, 1988).

In practice, results for model Mkr are quite similar to results for the model Mk even for

integers r of moderate size. Consider the example from the Praxis program. In the case of M1,

the normal Rasch model, r = 20 points suffice for quite accurate results. Differences between

corresponding maximum-likelihood estimates of the parameters a and γj under models M1r and
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M1 do not exceed 0.00003 in magnitude, a very satisfactory result, especially given that the

estimated asymptotic standard deviations for these parameters are at least 0.02. Results for r = 9

are a bit less accurate but still relatively satisfactory. In this case, the magnitude of differences

does not exceed 0.007 in the case of a and 0.001 for the γj . To compare estimated minimum

logarithmic penalties per item, let Ĥk be −(nq)−1`(Tk), and let Ĥkr be −(nq)−1`(Tkr). For the

normal Rasch model, Ĥ1 = 0.59639, while Ĥ1r is 0.59641 for r = 9 and Ĥ1r is 0.59639 for r = 20.

Indeed, the difference Ĥ1r − Ĥ1 is about 4× 10−8 for r = 20.

In the case of the 2PL model, results are somewhat similar, but not quite as accurate for

the approximations by Gaussian quadrature. For r = 32, differences in maximum-likelihood

estimates of the aj and γj for models M2r and M2 do not exceed 0.00003 in magnitude. For

r = 20, differences are within 0.0006 in magnitude, and for r = 9, differences are within 0.04 in

magnitude. In this case, Ĥ2 = 0.59157, Ĥ2r = 0.59165 for r = 9, and Ĥ2r = 0.59157 for r = 20.

The difference Ĥ2r − Ĥ2 is about 4× 10−7 for r = 20 and 4× 10−8 for r = 32.

These differences should be kept in perspective. Use of a standard likelihood-ratio chi-square

test for M1 versus M2 yields a statistic of about 3,770 on 44 degrees of freedom, so that model

M1 can hardly hold in any case, and the difference Ĥ1 − Ĥ2 of 0.00474 is much larger than any

differences Ĥkr − Ĥk that are encountered here.

Even in the case of the normal 2PL model, an interaction model (Haberman, 2004) yields a

value of Ĥ of 0.59112. Here the model used assumes that p is in S and

log p(x) = τs −
q∑

j=1

(βj + sγj)

for x in Γ and
∑q

j=1 xj = s for some real τs, 0 ≤ s ≤ q, βj , 1 ≤ j ≤ q, and γj , 1 ≤ j ≤ q. Thus

effects of approximation of integrals by Gaussian quadrature are relatively small compared to

basic differences between models.

The results for Gauss-Hermite quadrature are certainly adequate for r = 32 for both examples,

and they are rather satisfactory for r = 20. The question arises whether one can manage to

achieve higher accuracy with a smaller number of points by modification of the procedures used

for quadrature. This change can be especially important in cases such as the 2PL model in which

simple sufficient statistics are not available to simplify computations.

One alternative approach to quadrature is to use the approach found in the version of Parscale

used in the National Assessment of Educational Progress (NAEP). In this method, integration
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points are zk = (k − 21)/5 for 1 ≤ k ≤ 41, so that zk ranges from −4 to 4, and weights are

uk = d exp(−z2
k/2) for 1 ≤ k ≤ 41, where

d−1 =
41∑

k=1

exp(−z2
k/2).

Let DN be the distribution function such that, for x real, DN (x) is the sum of the uk for all k

such that zk ≤ x. Then maximum-likelihood estimates for model Mk are computed in effect

for the model MkN that λ is in Λk and D = DN . This approach is a bit less accurate than is

Gauss-Hermite integration with r = 20. For example, for M1N , the corresponding estimated

log penalty per item is Ĥ1N = 0.59639, but the differences between estimates for a and γj

from model M1N and from model M1 have absolute values as large as 0.0002. Thus the NAEP

approach does not appear attractive given that better accuracy can be obtained by Gauss-Hermite

integration with fewer quadrature points. A more promising alternative is adaptive Gauss-Hermite

quadrature.

2 Adaptive Gauss-Hermite Quadrature

Adaptive Gauss-Hermite quadrature has been used in statistical analysis for some time

(Naylor & Smith, 1982). The key feature involves careful use of distinct linear transformations

designed for each integral J(V exp(X′
iλ)). The linear transformations vary for each iteration of

an iterative algorithm. For iteration t ≥ 0, let the maximum-likelihood estimate λ̂ of λ have an

approximation λt with coordinates λjt for 1 ≤ j ≤ q, let

Vt =
q∏

j=1

[1 + exp(λjt)]

be the approximation of V that corresponds to λt, let

Pjt =
exp(λjt)

1 + exp(λjt)

be the approximation of Pj that corresponds to λjt, and let Qjt = 1− Pjt. In the case of M1,

λt(θ) = atθ1− γt

for an approximation at to the maximum-likelihood estimate of a and an approximation γ to the

maximum-likelihood estimate of γ. Similarly, in the 2PL case,

λt(θ) = θat − γt
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for an approximation at to the maximum-likelihood estimate of a with coordinates ajt for

1 ≤ j ≤ q and an approximation γ to the maximum-likelihood estimate of γ.

Let

Lit = log Vt + X′
iλt + log φ

for each examinee i, so that Lit is the logarithm of the probability density of θi that corresponds

to the item logit function λt. Observe that for both models M1 and M2, Lit is a strictly concave

function such that Lit(θ) approaches −∞ as |θ| approaches ∞. Thus Lit has a unique maximum

µit. Under the 1PL model, the derivative L′it of Lit satisfies

L′it(µit) = atXi+ − at

q∑
j=1

Pjt(µit)− µit = 0,

and the second derivative of Lit at µit is

L′′it(µit) = −1− a2
t

q∑
j=1

Pjt(µit)Qjt(µit) < 0.

Under the 2PL model,

L′it(µit) =
q∑

j=1

ajt[Xij − Pjt(µit)]− µit = 0,

and the second derivative of Li at ti is

L′′it(µit) = −1−
q∑

j=1

a2
jtPjt(µit)Qjt(µit) < 0.

Adaptive quadrature uses the location µit of the maximum of Lit and on σit = 1/[−L′′it(µit)]1/2.

Consider use of a scale change based on the linear function zit such that

zit(θ) = (θ − µit)/σit

for real θ. Then zit has inverse

z−1
it (z) = µit + σitz

for real z. Let

∆it = Lit(z−1
it )− Lit(µit)− log φ,

so that ∆it is a rescaled version of Lit that has first and second derivative 0 at 0. Consider p in S

such that (1) and (5) hold. Let

git = [λ− λt]′Xi − log V + log Vt,
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so that

p(Xi) = J(exp(git + Lit)/φ)

and

`(p) =
n∑

i=1

log J(exp(git + Lit)/φ).

Let

hit = g(z−1
it ).

Then use of standard formulas from calculus for change of variables shows that

`(p) =
n∑

i=1

log(σit) +
n∑

i=1

Lit(µit) +
n∑

i=1

log J(exp(∆it + hit)). (9)

Iteration t proceeds as if `(p) in (9) is replaced by

`r(p) =
n∑

i=1

log(σit) +
n∑

i=1

Lit(µit) +
n∑

i=1

log Jr(exp(∆it + hit)).

The potential advantage of the adaptive approximation is that ∆it is normally much less variable

than is Vt exp(X′
iλt), as is evident from consideration of derivatives at 0. In addition, iteration t is

based on behavior of λ for λ close to λt. The potential complication is that µit must be found by

an iterative computation essentially the same as that used to find the posterior mean of an ability

distribution.

For both models M1 and M2 for the Praxis example, it is quite adequate to let r = 9. In both

cases, maximum-likelihood estimates of parameters are accurate to within 0.00001. The adaptive

procedure was substantially faster than the ordinary Gauss-Hermite quadrature with 32 points.

In the 2PL case, on the particular personal computer on which the calculations were made, the

adaptive quadrature calculations required about 30 seconds, and the ordinary routine required

about 90 seconds. Even use of r = 5 only results in a modest decrease in accuracy, for parameter

estimates in the 2PL case remain accurate to about 0.0001. Thus adaptive Gauss-Hermite

quadrature is quite attractive. It is reasonable to expect that adaptive Gauss-Hermite quadrature

is increasingly attractive as the number of items increases, so that the σit, 1 ≤ i ≤ n, become

increasingly small.

3 Conclusions

Results in this report support the conclusion that adaptive Gauss-Hermite quadrature is quite

attractive in marginal estimation when a normal ability distribution is assumed. Generalization
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to multivariate normal ability distributions should be quite feasible. Such generalizations should

be important in NAEP models that employ such ability distributions.
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